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Abstract 23 
Natural mortality (M) is one of the most influential parameters in fisheries stock 24 

assessment and management. It relates directly to stock productivity and reference points 25 

used for fisheries management advice. Unfortunately, M is also very difficult to estimate, 26 

and hence very uncertain. Representing the uncertainty in M and how this influences 27 

estimates of management quantities is therefore an important component of conducting 28 

stock assessments. This paper outlines the range of methods available to estimate M for 29 

use in stock assessment. The methods include those based on maximum age, life history 30 

theory, relationships between “well-known” values for M (those found in the literature 31 

and based on data for the stock being assessed) and covariates, use of tagging data and 32 

catch curve analysis, and estimation within a single- or multi-species stock assessment 33 

model. All methods are likely subject to bias and imprecision due to incorrect 34 

assumptions and incomplete data. Furthermore, M is generally assumed to be constant 35 

over time, age, and sex - assumptions that are unlikely to be true for any stock. Based on 36 

our review, there is an obvious benefit to directly estimating M using data and within a 37 

stock assessment while assigning a prior based on empirical methods. This approach 38 

effectively uses all the available information while also representing the uncertainty. 39 

Carefully examining diagnostics and checking for model misspecification is required to 40 

ensure that the available data and stock assessment model assumptions are appropriately 41 

informative about M when it is estimated during the model fitting process. For situations 42 

where direct estimation is not possible (a condition found in data-limited to data-rich 43 

stock assessments), the use of multiple methods with robust sensitivity exploration is 44 

recommended. Even when direct data are integrated into a stock assessment, we 45 

recommend using other methods to estimate M and analysing the direct data outside the 46 

stock assessment model as diagnostic tools. 47 
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1. Introduction 55 
Natural mortality (M) is a fundamental part of modelling structured (e.g., age, length, or 56 

stage) population dynamics. There are many ways to define natural mortality, ranging 57 

from annual survival rates to instantaneous rates.  We define M as it is commonly used in 58 

fishery stock assessments as the instantaneous rate of natural mortality defined on an 59 

annual basis such that the survival over a year in the absence of fishing is exp[-M], and it 60 

acts continuously and simultaneously with fishing mortality such that the survival over a 61 

year in the presence of fishing mortality is exp[-(M+F)]. Seasonal or other time-step 62 

models can lead to modifications of this general form. In general, M represents all 63 

mortality not attributed to the fishery (e.g., predation, starvation, disease, senescence) and 64 

may include some forms of human-induced mortality not due to fishing. In some cases, 65 

estimates of M may also account for unreported catch or movement of fish out of the 66 

assessed area. In applications, the definition of natural mortality may change depending 67 

on the stock assessment model used.      68 

The fact that M directly affects estimates of stock productivity and reference points 69 

makes it one of the most influential parameters in fisheries stock assessment and 70 

management. Management quantities (e.g., MSY, the maximum sustainable yield), and 71 

reference points (e.g., BMSY, the biomass corresponding to MSY, and FMSY, the fishing 72 

mortality rate corresponding to MSY) form the central basis of most successful 73 

management systems (Hilborn and Ovando, 2014). While M is central to these quantities, 74 

it is also very difficult to estimate (due to lack of informative and unbiased data, such as 75 

tagging data or age-composition in the absence of fishing, and confounding with other 76 

stock-assessment model parameters, such as catchability and selectivity (particularly 77 

when dome-shaped)) and the assumptions underlying its estimation (e.g., time invariance 78 

and constancy over age and sex) are likely to be violated. Hence both M and those 79 

reference points can be highly uncertain. Representing the uncertainty in M and how this 80 

influences estimates of management quantities is therefore an important component of 81 

conducting stock assessments. Typically, estimates arise from rationalized assumptions 82 

made by experts (often informed by information for other stocks or species), calculated 83 

from general empirical relationships, and/or are based on life history theory. M is also 84 

usually assumed to be constant over time, age, and (somewhat less often) sex to simplify 85 

model complexity— assumptions that are unlikely to be true for any stock. In some stock 86 

assessments, the value of M has been unchanged for decades at values based on little, if 87 

any, support from actual data. Many of these issues were identified by Vetter (1988) over 88 

three decades ago, and they have yet to be fully addressed.   89 

Several methods have been developed to estimate M outside the stock assessment 90 

model, including those based on mark-recapture data (e.g., Chapman, 1961; Seber, 1982), 91 

catch-at-age data (e.g., Chapman and Robson, 1960; Paloheimo, 1980), maximum 92 

observed age (Hoenig, 1983, Then et al. 2015, Hamel and Cope, this issue), life history 93 

theory (Roff, 1984; Charnov, 1993; Jensen, 1996; Alverson and Carney, 1975), and 94 

empirical relationships between M and covariates (Pauly, 1980; Gunderson, 1997; 95 

Hoenig, 1983). Each of these methods has its strengths and weaknesses, and accepted 96 

approaches for specifying values for M for use in stock assessments vary widely as 97 

summarized in a review by Brodziak et al. (2011). 98 

The information used in the methods to estimate M outside of a stock assessment 99 

(e.g., catch-at-age/length and tagging data) can be integrated within the stock assessment 100 
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model (e.g., Methot and Wetzel, 2013; Punt et al., 2013; Maunder and Punt, 2013); the 101 

process for achieving this is the focus of this review. Theoretically, if data provide 102 

reliable information about M using traditional direct methods (e.g., tagging or catch-curve 103 

analysis), the same data should also provide reliable information about M inside an 104 

assessment.  However, there has been general pessimism regarding this approach (e.g., 105 

Deriso et al., 1985; Gudmundsson, 1998) because estimates of M are often highly 106 

correlated with estimates of other model parameters (e.g., catchability, selectivity 107 

(particularly when dome-shaped), steepness, and the primary focus of the assessment – 108 

fishing mortality) (MacDonald and Butler, 1982; Schnute and Richards, 1995; Clark, 109 

1999; Wang, 1999; Fu and Quinn, 2000) or there is no information about M in the data 110 

available for estimation purposes. However, some studies have shown that it is possible 111 

to estimate M within a stock assessment model (e.g., Fournier et al., 1998; Maunder and 112 

Wong, 2011; Lee et al., 2011) if the assessment is suitably constrained to effectively 113 

behave like a multi-cohort catch curve analysis. Misspecification of complex assessment 114 

models can bias the estimates of M (Piner et al., 2011).  115 

This paper reviews the methods for estimating M for use in fishery stock assessments 116 

and highlights the strengths and weaknesses of each. Evaluating the alternative methods 117 

to estimate M is important for recommending good practices. We consequently provide a 118 

summary of how well each method performs given what is known about them. We do not 119 

explicitly test the approaches, but rely on the information available in the literature. The 120 

evaluation is mostly qualitative, but we provide quantitative measures of performance 121 

when available. The true value of M, insofar as it exists, is unknown, so there is no direct 122 

test of estimation performance based on the results of actual assessments.  123 

Two main approaches have been used in the literature to evaluate the alternative 124 

methods (see Hoenig et al., 2016, for a discussion). These approaches are not necessarily 125 

applicable to all methods, making the comparison of the performance of the methods 126 

difficult. The first approach is to simulate the performance of estimators under known 127 

conditions where the true natural mortality rate or rates are known (e.g., Lee et al. 2011), 128 

although this approach depends on acceptable simulation specification and assumptions 129 

(Francis, 2012). The second approach is to evaluate which estimators predicted the values 130 

of M found in the literature (the reliability of these estimates of M is of course unknown) 131 

and use cross validation when the estimators are created based on the same values (e.g., 132 

Then et al. 2015; Hoenig et al. 2016).  133 

We first separate methods that estimate M independently from the stock assessment 134 

model (and may be used to construct an informative prior distribution for use in an 135 

assessment; Section 2) from those that estimate M within the assessment (Section 3). 136 

Following Hoenig et al. (2016), we then separate methods that estimate M independently 137 

of the stock assessment into those based on directly informative data (e.g., catch curve 138 

analysis and tagging analysis) and those based on indirect information such as theory and 139 

empirical relationships. Data used in the direct approaches can also be used within stock 140 

assessment models to provide information to estimate M, whereas “data” providing 141 

indirect information are better suited for developing Bayesian priors. 142 

2. Methods used to estimate M independently from a stock assessment 143 
The methods traditionally used to estimate M for input into stock assessments can be 144 

divided into four groups: 1) methods based on life history theory; 2) empirical 145 

relationships; 3) analysis of tagging data; and 4) analysis of catch-at-age data. We argue 146 
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that estimators based on theory are generally more susceptible to violation of the 147 

underlying assumptions of each method and consequently discuss them as a stepping 148 

stone to determine the relationships to use as empirical estimators. This section is 149 

therefore separated into empirical relationships (subsection 2.1), tagging analysis 150 

(subsection 2.2), and catch-curve analysis (subsection 2.3).    151 

2.1 Empirical estimators 152 

Empirical estimators, or those dependent on predictive relationships, are some of the 153 

most commonly applied ways to determine M for assessment of commercially managed 154 

fisheries within the U.S. and Australia. Table 1 lists the equations on which the methods 155 

of this section are based.  We summarize the main types and groups of estimators, but 156 

there are often many variants within each type of estimator (Kenchington, 2014; Then et 157 

al., 2015), only some of which are listed here. Table 1 shows a subset of the “revised” 158 

variants of some of the most popular relationships based on different data sets and/or 159 

assumptions about the error between the “well-known” values for M (those found in the 160 

literature and based on data for the stock under consideration) and the model predictions.  161 

Given that uncertainty and estimation error in M scales with M, and therefore 162 

untransformed data demonstrate substantial heteroscedasticity, many analysts have taken 163 

the appropriate step of log-transforming both M and associated life-history covariates 164 

(e.g., Pauly, 1980; Hoenig 1983; Hamel, 2015), while others have not, or have not done 165 

so for a subset of analyses (e.g., Jensen, 1996; Then et al., 2015). Analyses based on 166 

untransformed data likely give too much weight to data points with high M estimates, and 167 

therefore skew the results and are likely to provide poor estimates, particularly for species 168 

with low M values, i.e., long-lived species.  169 

Observed variability in the relationship between covariates and M represents a 170 

combination of the actual variability in the relationship among taxa combined with error 171 

in the estimated values of M and covariates used (e.g., Gunderson et al., 2003; Hamel and 172 

Cope, this issue) and inconsistencies in assumed functional forms (e.g., von Bertalanffy 173 

growth, constant M across age). Data acquisition, including sampling issues and ageing 174 

error can affect estimates across the range of life-history parameters, and can affect each 175 

of the methods discussed below.  176 

2.1.1 M estimators based upon maximum age 177 

Conceptually, estimators based on maximum age should be preferred because maximum 178 

age, or longevity, relates more directly to, or arises from, M (or more accurately total 179 

mortality, but see below). Methods used to estimate M using the maximum observed age 180 

(tmax) are based on models of the probability of a fish living to a given age under a given 181 

level of total mortality. These, and in particular the inverse relationship of M to tmax, are 182 

theoretically appealing, as a population with a well-defined population maximum age 183 

follows the logic of a life table (Caswell 2001). The total mortality rate can be calculated 184 

from the standard exponential decay model of population dynamics, 0 exp( )t tN N Z= − . 185 

This decay model is rearranged so that the proportion p living to at least a given age t is 186 

0/ exp( )t tp N N Z= = − . This equation can then be used to determine the probability of 187 

observing a given aged fish in a sample from the population (while ignoring ageing 188 

error). A rule of thumb used in the past to estimate M was M = 3/tmax (Eqn T1.2.1a; e.g., 189 

Rugolo et al., 1998) that derives from the formula M = -ln(p)/tmax (Eqn T1.2.1), where p 190 

= 0.05 is the proportion of fish that survive to age of tmax or older assuming constant M 191 
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with age. Intuitively, tmax (and p) should represent an age at which senescence leads to 192 

high M and therefore relatively few older individuals. However, p = 0.05 is an arbitrary 193 

value. The appropriate value for p will depend on several factors including the sampling 194 

design, sample size, and the relative timing of the onset of senescence.  195 

Hoenig (1983) developed a non-linear empirical tmax-based estimator by using log-196 

space regression of M on maximum age for 84 unexploited or lightly exploited stocks 197 

(Eqn T2.2.2a). Then et al. (2015) revisited this non-linear approach (Eqn T2.2.2.b) and 198 

another using non-linear least squares (Eqn T2.2.2c) with an updated and larger data set. 199 

Hewitt and Hoenig (2005) found an inverse relationship for M that was 40-50% higher 200 

than the M = 3/tmax rule of thumb (Eqn T2.2.1a), which suggests that the corresponding 201 

value of p is much lower (Hewitt and Hoenig, 2005). Hamel (2015) revisited Hoenig’s 202 

(1983) data and found an inverse relationship (Eqn T2.2.1b) close to that of Hewitt and 203 

Hoenig (2005). Then et al (2015) evaluated an inverse relationship using their data set 204 

(Eqn T2.2.1c), but failed to transform the data. Hamel and Cope (this issue) evaluated 205 

Then et al.’s (2015) data under a more appropriate transformation (Eqn T3.2.1).   206 

A lingering concern with estimating M from maximum age is that the estimate is 207 

based on the maximum age observed and not the maximum age in the population. Holt 208 

(1965) provided a closed form solution to the expected maximum age for a sample size of 209 

n:   �(����) ≅ ln (2
 + 1)/� + ��, where t1 is the age-at-first capture, from which total 210 

mortality (Z) can be computed (Hoenig, 2017). Hoenig (1983) argued that the maximum 211 

age tends to increase slowly with increasing sample size after about 200 individuals have 212 

been examined (although this will depend on selectivity of the gears used to collect the 213 

samples and Z). However, there is some debate over the possible magnitude of the 214 

effective sample size and its influence (Maunder and Wong, 2011; Kenchington, 2014; 215 

Hoenig 2017; Hamel and Cope, this issue). Nevertheless, since the proportion, p, is 216 

arbitrary and the effective sample size is usually unknown, we recommend using the 217 

empirical relationships rather than theory, finding that defining methods that include the 218 

sample size is not useful. Instead, it is assumed that the stock for which M is being 219 

estimated is a random sample from the population of stocks from which the stocks used 220 

to generate the relationship were also sampled randomly. This helps with other issues that 221 

affect the estimate of maximum age, such as ageing error.  222 

2.1.2 M estimators based on growth and reproduction  223 

Life history theory has been used to develop a multitude of relationships to estimate M 224 

(e.g., Roff, 1984; Charnov, 1993; Jensen, 1996; Alverson and Carney, 1975; Gislason et 225 

al., 2010), based upon the idea that a species’ life history has evolved to maximize 226 

lifetime reproductive fitness or the population growth rate r through tradeoffs among 227 

reproduction, growth, and natural mortality (Roff, 1984). While a step removed from 228 

using longevity, information and/or assumptions about growth and reproduction can be 229 

used to infer M.  230 

In order to maximize lifetime reproductive fitness, maturity should occur when 231 

fecundity exactly matches, or exceeds, for the first time, the expected future fecundity 232 

losses from increased mortality and reduced growth due to the costs of reproduction. 233 

Since we do not generally know the exact impact of maturity on growth and mortality, 234 

various reasonable assumptions have been made. The first Beverton and Holt life history 235 

invariant (Charnov, 1993): Mtm = C1 (Eqn T1.1.1) indicates that the age of maturity (tm) 236 

occurs when some particular proportion of a cohort remains, and thus is closely linked to 237 
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longevity. Others have assumed that maturity should occur when at peak cohort 238 

reproductive output (tmb or tc; Alverson and Carney, 1975; Roff, 1984; Zhang and 239 

Megrey, 2006), or at the inflection point of the von Bertalanffy growth equation (Jensen, 240 

1996). In situations where both tm and von Bertalanffy K are known, Roff’s (1984) 241 

original equation would apply (Eqn T1.1.3). Alverson and Carney (1975) approximate tmb 242 

as a constant fraction of maximum observed age (tmax) based on regressions with 243 

empirical data, and do not account for variation in the relative age of maturity. Zhang and 244 

Megrey (2006) generalized Eqn T1.1.3 to include population-specific values for t0 and β 245 

(a difficult proposition; Eqn T1.1.4) and recommend using data to calculate tmb based on 246 

regression with tmax from specific ecological groups.  247 

The second Beverton and Holt life history variant (Charnov, 1993): M/K = C2 (Eqn 248 

T1.1.2) suggest that M is proportional to K, and hence that an increased rate of growth 249 

towards maximum size is correlated with increased mortality rate. Jensen (1996) 250 

calculated the constants of the Beverton and Holt invariants (Eqns T 1.1.1 and T1.1.2) by 251 

assuming that the age at maturity equalled the age at the inflection in the von Bertalanffy 252 

growth equation in weight and assuming Roff’s equation (Eqn T1.1.3).  253 

More complicated approaches have been used to estimate M based on life history. 254 

Beverton (1992) derived a relationship among length-at-maturity (Lm), asymptotic length 255 

(L∞), von Bertalanffy K, and M (Eqn T1.1.5). Chen and Watanabe (1989) provided a 256 

function for age-specific M, with higher rates at young and old ages based on the von 257 

Bertalanffy growth parameters using the assumption that mortality is inversely 258 

proportional to growth (Eqn T1.1.6). 259 

Empirical relationships have been developed via regressions using “well known” 260 

estimates of M against life-history covariates.  Pauly (1980) conducted one of the earliest 261 

comprehensive analyses by regressing M on von Bertalanffy growth rate (K) and 262 

asymptotic size (either weight or length), and water temperature (T) using data for 175 263 

marine and freshwater fish stocks (Eqn T2.3.3; converted to natural logarithms; Quinn 264 

and Deriso, 1999). Using data for the 175 stocks in Pauly (1980), Jensen (1996) 265 

estimated M/K = 1.60 (Eqn T2.3.4a). However, this analysis was conducted without log 266 

transformation of the data, and therefore is subject to impacts of heteroscedasticity. Then 267 

et al. (2015) made the same assumption in analysing their data (Eq. T2.3.4c). Hamel 268 

(2015) analysed data from Pauly under log transformation and estimated M = 1.75K (Eq. 269 

T2.3.4b). Conducting the same analysis using the updated data set from Then et al. 270 

(2015) leads to the relationship M = 1.55K (Eqn T3.3.4). Beverton (1992) suggested that 271 

M/K would vary among taxa, ranging between 0.2 and 2.5 across species, questioning the 272 

invariant nature of this ratio (Nee et al., 2005). Ralston (1987) provided M/K 273 

relationships for snappers and groupers (Eqn T2.3.5). Using a similar approach, Charnov 274 

and Berrigan (1990) found that Mtm ~ 2 (Eqn T2.3.6). Beverton (1963) estimated Mtm at 275 

1.54 for cod, 1.54 for flatfish, and 3.33 for brown trout. These results provide a wide 276 

range of values but are somewhat consistent with relationships using life history theory. 277 

Finally, Thorson et al. (2017) present a taxonomically based hierarchical model and tool 278 

(FishLife) that constructs species-specific M/K (as well as M by itself) using the FishBase 279 

database.  280 

Body length and weight (or mass) have also been used as predictors of M. Lorenzen 281 

(1996) analysed the relationship between body weight and M in juvenile and adult fish 282 

for six aquatic ecosystems types (lakes, rivers, ocean, pond, cage, and tank aquaculture 283 
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systems) using a power function. The parameters were estimated for fish in the six 284 

ecosystems, as well as within selected populations, species and families. At the 285 

ecosystem level, no significant differences in parameters were found between lakes, 286 

rivers and the ocean, and a joint relationship was estimated for all natural ecosystems 287 

(Eqn T3.3.10). Eqn T3.3.10 allows for size-specific M, although it can also be used to 288 

obtain an overall M. McGurk (1987) fitted a similar model to Lorenzen (1996) but 289 

obtained a different exponent (Eqn T2.3.8). Gulland (1987) responded to the work of 290 

McGurk (1986), providing estimates of M based on weight or length (Eqns T1.3.1 and 291 

T1.3.2), and Peterson and Wroblewski (1984) provided an equation for M as a function of 292 

size formulated on Silvert and Platt’s (1980) work related to the theory on the distribution 293 

of biomass as a function of size (Eqn T2.3.9). All of these relationships, as with many 294 

others discussed here, display wide variability, and therefore the relationship is uncertain 295 

and likely variable among taxa and stocks.  296 

Based on the r-K selection theory, M is expected to be positively correlated with 297 

reproductive effort (Gunderson, 1980; Gunderson and Dygert, 1988). Gunderson and 298 

Dygert (1988) provided a linear relationship between M and the gonadosomatic index 299 

(GSI = ovary weight/ somatic body weight) and Gunderson (1997) updated the 300 

relationship using 28 stocks of fish to yield M = 1.79GSI (Eqn T2.3.7). This analysis was 301 

undertaken on untransformed data. Hamel (2015) analysed these data after log-302 

transformation and found a similar relationship of M = 1.82GSI (Eqn T3.3.7). There are 303 

several issues with providing accurate values for GSI, including annual variability due to 304 

feeding conditions (Gunderson and Dygert, 1988), reproductive stage, and the timing 305 

within spawning season.  306 

Each of the above methods use differing degrees of relatedness to M (maximum age 307 

the strongest, size or weight much less strong) to form predictors with a range of values, 308 

and are only as good as the inputs. Given the various degrees of separation to M and the 309 

reliability of life history value estimates, there is no one superior approach. Applying 310 

multiple empirical estimators is recommended when determining either a fixed value to 311 

use within a stock assessment, or a prior to aid estimation of M internal to a stock 312 

assessment (Cope and Hamel, this issue). 313 

2.1.3 Performance 314 

The ‘performance’ of each method is the difference between the true value and the value 315 

from the prediction equation. However, in practice the true value is never known. Instead, 316 

we evaluate the prediction based on its uncertainty. The error associated with estimates of 317 

M based on empirical methods reflect error in creating the relationship and error in the 318 

covariates for the specific stock being analysed. Error in creating the relationship 319 

includes model error (i.e., the equation used for prediction is wrong) and estimation error 320 

which encompasses error associated with measurements of the covariates for the species 321 

used to create the relationship and to which it is applied, error in the values of M used to 322 

create the relationship, and variation in the relationship among species or stocks. 323 

Empirical methods offer insight into the relationship between M and other life history 324 

parameters. However, accurate estimates of M based on life history theory require 325 

accurate estimates of associated life history parameters. Any error or bias in these 326 

quantities will impact the predictions of M (Quinn and Deriso, 1999), although those 327 

errors exist in the data used to create the relationships, and so those actually represent the 328 

relationship between estimated, rather than true values of life history covariates and M. 329 
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Estimates of K are often confounded with estimates of L∞ (e.g., Fig. 1), and there may be 330 

considerable uncertainty in the estimate of K for the same species across regions. For 331 

example, estimates of M based on Jensen’s empirical relationship, M = 1.6K, for 42 data 332 

sets for dorado (Coryphaena hippurus) stocks presented in Chang and Maunder (2012), 333 

which include different data types and aging methods, range over an order of magnitude 334 

(Fig. 1). K may also change over time. Similarly, estimates of M based on tm will be 335 

somewhat uncertain, because maturity may occur over a range of ages and may vary 336 

across years and with environmental conditions, the method used to estimate maturity 337 

may be inaccurate, or there may be ageing or sampling errors leading to uncertainty in the 338 

estimate of tm. The relationship between M and the life history parameters may differ 339 

from the theory for individual species, leading to additional uncertainty in the estimates 340 

of M. Trade-offs between reproductive effort and adult growth or survival have been 341 

reported in many field studies and manipulation experiments (e.g., Roff, 1992; Stearns, 342 

1992), indicating that the life-history parameters and/or the relationships may vary over 343 

time. For example, estimates of M based on K vary substantially over time for English 344 

sole (Parophrys vetulus) off the US West Coast (Table 2). Finally, since M is likely to 345 

vary with age, a single estimate from life history will be incorrect to some degree for 346 

some ages even if it is correct on average. However, attempting to account for variation 347 

in M with age does not guarantee a more accurate result.  348 

The observed or estimated maximum age will be affected by the recruitment and 349 

exploitation history of a stock. For example, if there are infrequent large spikes in 350 

recruitment, the maximum aged fish is more likely to come from the cohort represented 351 

by a large recruitment event, particularly for species with shorter lifespans. Where fishing 352 

mortality has been significant, selectivity, refugia and sampling approach are all 353 

important factors. There are other issues related to applying methods based on maximum 354 

age, including ageing error and age-dependence in M. Consequently, some analysts 355 

ignore the oldest recorded age if it is perceived to be an outlier (and perhaps an age-356 

reading error) and use the second oldest age, the oldest age that has a few observations, or 357 

a percentile. For example, Monk et al. (2018) conducted an analysis for California 358 

scorpionfish (Scorpaena guttata) where M was determined by averaging the three oldest 359 

estimated ages of each sex, and Wetzel et al. (2017) used an age less than the maximum 360 

age to account for possible aging error based on the range of other ages available with 361 

multiple observations. However, these assumptions are ad hoc. Maximum age 362 

relationships can also be used to evaluate whether the other relationships make sense 363 

(Cope and Hamel, this issue).  364 

Evaluating the prediction error of M for empirical approaches is complicated due to 365 

the multiple sources of uncertainty, which are usually unknown (Hoenig et al., 2016; 366 

Hamel, 2015). Hamel (2015) highlighted the importance of the difference between 367 

prediction intervals and confidence intervals when considering methods for predicting M 368 

using covariates such as maximum observed age, growth parameters, and GSI, noting the 369 

considerable difference between the two (Fig. 2), with the latter encompassing the 370 

expected range of a new observation. The sources of error include error in the values of 371 

M used in the regression, error in the measurement of the covariates (e.g., K, Amax), 372 

individual variability in M given the covariates, error in the model used to represent the 373 

relationship, and error due to finite sample size. Without information on these 374 

components of the uncertainty, completely unbiased estimates of the uncertainty in the 375 
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value of M are not possible. Confidence intervals for the regression will underestimate 376 

the uncertainty, providing uncertainty around the mean M given observed covariates, 377 

while prediction intervals, which represent variability in the estimated value of M (i.e., 378 

what was used in the regression), will overestimate the uncertainty in the true value of M 379 

due to incorporating both true variation in the relationship between estimated covariates 380 

and M and estimation error in the M values used for the regression (Hamel and Cope, this 381 

issue). When using these empirical relationships as the basis for priors for M in stock 382 

assessment, Hamel and Cope (this issue) recommend reducing the width of the prediction 383 

intervals, and priors, based on reasonable assumptions. 384 

Attempts to quantify the error associated with empirical methods for estimating M 385 

have been based on cross-validation and regression diagnostics. For example, Pascual 386 

and Iribane (1993) computed the prediction errors associated with estimators of M based 387 

on growth parameters and temperature (Pauly, 1980), gonad weight (Gunderson, 1980; 388 

Gunderson and Dygert, 1988), and body length (Oshumi, 1979) and found median 389 

prediction errors from 10-36%. Prince et al. (2015) fitted the model of Beverton (1992) to 390 

123 marine species data sets and found considerable variation in the Beverton-Holt life 391 

history invariants among species, concluding that there is “predictable natural variation 392 

in the BH-LHI ratios and the relationships between size, age, and reproductive potential 393 

that they determine”. Kenchington (2014) concluded that none of the 30 estimators he 394 

examined provided accurate estimates for every species, and none appeared sufficiently 395 

precise for use in analytical stock assessments, while several performed so poorly as to 396 

have no practical utility. This conclusion likely applies to most empirical methods, but in 397 

many cases, empirical estimates of M are the only options. Thorson et al. (2017) 398 

conducted an extensive investigation of life history ratios and found that the ratio M/K 399 

varies systematically based on the timing of maturation, which is correlated with species 400 

taxonomy, following similar conclusions by Beverton (1992).  401 

Attempts to quantify the uncertainty associated with estimating M using empirical 402 

methods lead to levels of error from 50 to 200% of the estimate based on Kenchington 403 

(2014), whereas MacCall (2009) found a CV of 50% based on the methods he reviewed. 404 

The two methods developed and preferred by Then et al. (2015) had prediction errors of 405 

32% and 60% (based on that which used tmax and another based on growth parameters).  406 

Hamel (2015) developed an approach for combining priors for M based on multiple 407 

methods, weighting each prior by the inverse of its prediction variance, and accounting 408 

for the overlap in the data used in the construction of the equations on which the methods 409 

are based. Hamel and Cope (this issue) expand on this work and that of Then et al. (2015) 410 

to develop a new age-based prior. Cope and Hamel (this issue) present a tool (The 411 

Natural Mortality Tool) that offers ways of developing priors based on maximum age and 412 

other relationships while incorporating intra- and inter-method variability. The CVs of 413 

the distributions for M based on the method of Hamel (2015) depend on the number of 414 

empirical methods that can be applied. In practice, this method led to estimates of M with 415 

CVs ranging from 28% to 58% for US West Coast groundfish stocks. In recent years, 416 

assessments for these stocks set M based on maximum age alone, using the updated Then 417 

et al. (2015) data along with the method from Hamel (2015), which results in a CV of 418 

46%. In some applications the predicted value has been used as a fixed value for M while 419 

in others the information is used to create a log-normal prior (median = 5.4/tmax and log-420 

space sd = 0.438). For example, Haltuch et al. (2017) conducted two analyses in which 421 
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the first fixed female M at the median of the prior based on a maximum age of 21 and the 422 

male M was estimated and the second estimated male and female M (with priors). Hamel 423 

and Cope (this issue) take the same analysis, but account for error in M values in the 424 

meta-analysis to arrive at a log-space prediction error = 0.31 (or CV = 32%).  425 

Table 1 provides estimation equations based on theory or “rules of thumb” (Table 1a), 426 

equations based on empirical analysis methods that are not or no longer recommended 427 

(Table 1b) and equations for methods that are recommended (Table 1c). Recommended 428 

methods are based on more recent and well-vetted data sets and use more appropriate 429 

transformations for analysis.  430 

2.2 Mark recapture methods 431 

2.2.1 Overview  432 

Mark-recapture data can be the basis for reliable ways to estimate M (Vetter, 1988; 433 

Fonteneau and Pallares, 2005). The methodology has been well studied, and the 434 

properties of the commonly used estimators are well understood (e.g., Seber, 1982; 435 

Brownie et al., 1985; Lebreton et al., 1992). The basis for estimating survival rates in 436 

most tagging methods is the ‘Brownie model’ (originally summarized by Brownie et al. 437 

[1985]). Given an estimate of the reporting rate, this method allows the estimation of 438 

natural and fishing mortality. Latour et al. (2003) discuss tagging lobsters just below and 439 

just above the legal size limit, which allows separating F from M without having to know 440 

the tag reporting rate. Pollock et al. (1991) expressed total mortality in the Brownie 441 

model in the form of continuous natural mortality and fishing mortality rates. The basic 442 

methods for estimating M (and other quantities) using tag-recapture data have been 443 

extended in numerous ways given the particular concerns for specific cases. For example, 444 

Hoenig et al. (1998a) extended the basic approach so that fishing effort can be used as an 445 

index of fishing mortality, and Hoenig et al. (1998b) illustrated how to allow for non-446 

mixing of tagged animals. Jiang et al. (2007a) extended the approach to allow fishing and 447 

natural mortality to depend on age while Jiang et al. (2007b) showed how it is possible to 448 

allow for animals that are caught and released and subsequently harvested. Bacheler et al. 449 

(2008) extended the latter model by allowing for differential selectivity between fish that 450 

are harvested and those caught and released. Rudd et al. (2014) developed a spatially 451 

explicit tag-based model that permitted estimation of M among spatial strata and fitted it 452 

to acoustic telemetry data for Gulf sturgeon (Acipenser oxyrinchus desotoi). 453 

Integrating the tagging data into the stock assessment model has several advantages 454 

(Maunder 1998; 2001). Sibert (1984) and Hilborn (1990) developed a multi-area stock 455 

assessment framework in which tagging data are used to estimate movement. This 456 

framework can make use of tagging data as well as other conventional stock assessment 457 

data. Hampton (1991) applied this framework to data for southern bluefin tuna (Thunnus 458 

maccoyii) and tested it using simulations. While estimates of M were obtained, they were 459 

highly imprecise (CV > 100% for some cases). Better precision is expected with 460 

improved sample designs and higher sample sizes. 461 

Non-mixing of tags can be accounted for by estimating a parameter to represent the 462 

difference in fishing mortality in the first few periods while the tagged fish are mixing 463 

with the untagged fish. In applications where tagged fish never fully mix with untagged 464 

fish or fishing effort is unavailable, cohort analysis can be applied to the tagging data. For 465 

example, the Murphy-Tomlinson method (Bayliff, 1971) is based on applying a virtual 466 

population analysis to tagging data (e.g., Maunder et al., 2009). This method has the 467 
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advantage that knowledge of the fishing effort or the numbers of non-tagged fish is not 468 

required. However, either all the tagged fish have to be dead after some time or a terminal 469 

fishing mortality has to be assumed. It also requires that the total number of tagged fish 470 

removed is known, which implies that the reporting rate is 100% or known. The more 471 

general approach is that of Ishii (1979) and Hilborn (1990), which simulates the 472 

dynamics of the tagged population, accounts for fish removed from the population due to 473 

fishing and is more consistent with contemporary integrated fisheries stock assessment 474 

models (e.g., Maunder and Punt, 2013). Maunder (1998, 2001) and Hampton and 475 

Fournier (2001) have extended tagging analysis into the integrated fisheries stock 476 

assessment modelling framework (see Goethel et al., 2011) and it is now commonly 477 

found in integrated packages used for assessments (e.g., Methot and Wetzel, 2013).    478 

2.2.2 Performance 479 

Extensive evaluation of tag-based approaches for estimating mortality has been 480 

undertaken to evaluate the reliability of the estimates of the parameters of tag-based 481 

models, particularly in “self tests” in which the model used to generate artificial data sets 482 

is the same as that on which the estimator is based. However, there are notable 483 

exceptions. For example, Lauretta and Goethel (2017) examined the performance of a 484 

tag-based estimator of movement and mortality focused on Atlantic bluefin tuna Thunnus 485 

thynnus using an operating model based on a continuous time model and generated 486 

artificial conventional and gene-based tagging data.  487 

Common issues with tagging analysis include non-reporting of tags, tag shedding, 488 

and tag-induced mortality (either initial or long-term) (Pollock, 1991). Underestimates of 489 

the magnitude of these alternative explanations for tag loss results in positively biased 490 

estimates of M, and it is therefore important to either minimize these factors through 491 

well-designed tagging studies or to have reliable estimates of them. Non-mixing of 492 

tagged fish with the untagged population is also a common issue and may bias estimates 493 

of M. Tagging may also modify fish behaviour, changing their vulnerability to capture. 494 

Estimates of M may also be biased by migration if it is not appropriately accounted for.  495 

If sample sizes are adequate and the appropriate information collected, estimates of M 496 

can be obtained for different components of the population (e.g., by size [Hampton, 497 

2000] or sex). While tagging-based methods provide, in principle, unbiased estimates of 498 

M, the estimates for particular cases can be quite poor, making it near impossible to 499 

provide generic bounds on how precise estimates of M based on tagging are likely to be, 500 

as precision is directly related to the number of tag-recaptures. For example, Frusher and 501 

Hoenig (2001) estimated M for southern rock lobster (Jasus edwardsii) to be 0-0.018 yr-1, 502 

with 95% confidence intervals that included 0.3 yr-1 and larger. The low estimate of M 503 

was attributed to confounding with the tag-reporting rate and the relatively low sample 504 

size. A more realistic (and precise) estimate of 0.12 yr-1 (SE 0.14) was obtained by 505 

Frusher and Hoenig (2003) when they related fishing mortality to effort, assuming 506 

constant catchability over years but unequal catchability within periods of the year.  507 

Estimates of M by age/stage have rarely been obtained. However, Hampton (2000) 508 

estimated size group-specific M for skipjack (Katsuwonus pelamis), yellowfin (Thunnus 509 

albacares), and bigeye tuna (Thunnus obesus) in the western tropical Pacific Ocean, with 510 

CV ~ 25%. 511 

Close-kin mark-recapture (CKMR) is an approach that integrates genetic methods of 512 

population estimation and population dynamics models to estimate abundance and 513 
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potentially a range of demographic parameters including natural mortality-at-age. The 514 

approach uses genetic markers to identify animals that are related (e.g., parent-offspring 515 

pairs; half sibling pairs, and perhaps other relationships; Skaug, 2001; Bravington et al., 516 

2016a). The data are analysed within the general framework of mark-recapture data, but 517 

the analysis is not subject to many of the problems typically associated with conventional 518 

tagging data such as tag-loss, tag mortality, and tag reporting. The method requires an 519 

assumption that the spawning component of the population is discrete and sampled 520 

proportionally. The estimates of absolute abundance from CKMR can be more precise 521 

than those from typical stock assessments (CV = ~0.17 for southern bluefin tuna; 522 

Bravington et al., 2016b) and even the estimates of survival are remarkably precise (CV = 523 

~0.03 for southern bluefin tuna; Bravington et al., 2016b). 524 

2.3 Catch curve type methods 525 

2.3.1 Overview  526 

Catch-at-age data are commonly collected for commercially exploited species, and the 527 

age-structure of the population provides information on total mortality. Catch-curve 528 

analysis is based on the decline in cohort abundance through time [i.e., 0

Zt

t
N N e−= ]. If 529 

the absolute numbers in a cohort are known for two time periods (e.g., at ages t and t + 530 

1), then the difference is the total number of individuals that die during that time period. 531 

However, it is typical that only relative numbers are known, so only the rate of total 532 

mortality can be determined. There are two types of catch-curve analysis and they both 533 

assume there is no trend in fishing mortality over time. The first, cross-sectional catch 534 

curve analysis, creates a “synthetic” cohort (Quinn and Deriso, 1999) from a single year 535 

of data, and assumes that all ages have the same selectivity (catchability) and that 536 

recruitment shows no trend over time (Tuckey et al., 2007). Multiple years of data may 537 

be averaged to reduce the influence of variation in recruitment. The second, longitudinal 538 

catch curve analysis likewise typically assumes that that all ages have the same 539 

selectivity (catchability), but also assumes catchability remains the same from year to 540 

year and requires a reliable measure of relative abundance (e.g., CPUE) (Tuckey et al., 541 

2007). The benefit of longitudinal catch curve analysis is that it does not make any 542 

assumptions about recruitment. Tuckey et al. (2007) outline diagnostics applied to 543 

multiple catch curves (i.e., several years of catch-at-age data) to evaluate whether the 544 

assumptions have been violated and the possible causes.       545 

Catch curve methods (e.g., regression of log-numbers on age, i.e., ln(Nt) = ln(N0) - Zt, 546 

or the Chapman and Robson (1960) method) can be applied to estimate M directly in 547 

cases where fishing mortality is known to be negligible (e.g., the samples are taken from 548 

an MPA, assuming that M in areas open and closed to fishing are the same) (e.g., 549 

Beverton and Holt, 1957).  More generally, catch-at-age data include the effects of both 550 

fishing and natural mortality. If total mortality (Z) has been estimated, for example, based 551 

on catch curve methods, it can be regressed on effort E to estimate M (Beverton and Holt, 552 

1956):   553 

Z = M + qE + ε    (2) 554 

where q is the catchability coefficient and the intercept (effort = 0) is an estimate of the M 555 

(Quinn and Deriso, 1999). This assumes that the relationship between fishing mortality 556 

and effort is linear and measured accurately. The estimates of M will be biased if the 557 
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relationship is nonlinear, as is often the case (Harley et al., 2001; Rose and Kulka, 1999), 558 

and potentially more so if the relationship between biomass and catchability is nonlinear. 559 

In addition, since catch curves assume stationary mortality over age and time for enough 560 

years to use a linear regression to reliable estimate Z, this approach is probably not 561 

practical in most situations. Therefore, catch curve analysis that does not use data from an 562 

unexploited population or does not have other data to estimate F (e.g., when integrated 563 

into a stock assessment model), is unlikely to provide reliable estimates of M. 564 

Catch curve methods can be made more sophisticated by integrating them into 565 

population models along with the relationship Z = M +qE. Paloheimo (1980) developed 566 

the first cohort-based regression model using catch-at-age and effort data to estimate 567 

catchability (q), M, and recruitment using multiple regression. Paloheimo and Chen 568 

(1996) improved the method by developing a more appropriate error structure. 569 

Correlation between estimates of M and q is usually high, but separation may be possible 570 

if fishing effort varies substantially among years (Paloheimo and Chen, 1996). This 571 

approach can be considered a modification of catch-curve analysis that analyses multiple 572 

cohorts simultaneously and is a stepping stone towards contemporary integrated fisheries 573 

stock assessment methods.    574 

Catch-at-age data are sparse for some poorly sampled or difficult to age stocks. In 575 

such cases, length-frequency data can be converted into age-frequencies using an age-576 

length key, although the estimates of catch-at-age might be biased if the age-length key is 577 

borrowed from another year (or years). Beverton and Holt (1957) developed a simple 578 

catch curve-based estimator for mortality using length-frequency data and the von 579 

Bertalanffy growth parameters ( L∞
 

and K), i.e.: 580 

c

L L
Z K

L L

∞ −=
−

     (2) 581 

where Lc is the length at first capture, selectivity is knife-edged, and L  is the average 582 

length of those animals longer than Lc. This approach does not require age data for every 583 

year, but generally does require some age data to estimate the parameters of the von 584 

Bertalanffy growth curve. These methods have been extended into a family of stock 585 

assessment methods designed to estimate mortality with a series of diagnostic tests of the 586 

assumptions of these methods (e.g., a test for dome-shaped selectivity) (Then et al., 587 

2018).  588 

 589 

Authors Data Assumptions/details 

Beverton and Holt (1956) mean length Equilibrium 

Gedamke and Hoenig 

(2006) 

mean length, several years time-varying Z 

Gedamke et al. (2008)  mean length, index of 

recruits 

time-varying Z and 

recruitment 

Huynh et al. (2017) mean length, overall catch 

rate 

time-varying Z and 

recruitment 

Then et al. (2018) mean length, effort Estimates q and M (thus 

annual F and Z) 

   590 
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2.3.2 Performance 591 

The accuracy of catch curve analysis is influenced by several factors such as whether the 592 

method is applied to data for a true cohort or to a synthetic cohort, and whether 593 

selectivity is known. In addition, any error in the age data will influence the results of a 594 

catch-curve analysis. Estimates of mortality will also be confounded with migration. 595 

There are also concerns with double use of the catch-at-age data if estimates of M based 596 

on catch curves are then introduced into assessments that fit to the same data as part of 597 

the overall likelihood. 598 

Wilderbuer and Turnock (2009) applied the standard catch curve and Chapman-599 

Robson methods, along with the empirical method of Hoenig (1983) to data for 600 

arrowtooth flounder Atheresthes stomias in Alaska, which is lightly fished, with the 601 

estimates of M differing among methods and years (0.11 – 0.51yr-1). Estimates of M 602 

based on an integrated analysis assessment fell within the range of estimates from the 603 

other methods. The major problem with regressing Z on effort (and methods based on 604 

more sophisticated approaches) is that estimates of M and q are highly correlated as they 605 

both contribute to total mortality, and the method fails to account for transient behaviour 606 

when estimating Z, resulting in bias (Punt et al., 2021). Changes in M will also be 607 

confounded with changes in the catchability of survey index age-patterns as illustrated 608 

mathematically by Zhang et al. (2020). 609 

The selectivity of the gear used to collect the catch-at-age data influences relative 610 

abundance-at-age. Typically, the data used to develop a catch curve show an initial 611 

increase in the abundance of subsequent age classes of young fish in the catch. This is 612 

typically interpreted as increasing selection to the gear, which normally is followed by a 613 

decrease that is due to mortality (Quinn and Deriso, 1999). It is therefore common to 614 

ignore the first few ages that are not fully selected by the gear. Unfortunately, it is often 615 

difficult to determine which age is fully selected and the selectivity may decline with age 616 

for older fish. Domed-shaped selectivity patterns are confounded with mortality 617 

(Thompson, 1994), and assuming a misspecified asymptotic selectivity curve will result 618 

in positively biased estimates of mortality. The choice of ages is generally done in an ad 619 

hoc fashion by choosing the ages that show a linear decline (Quinn and Deriso, 1999). 620 

Smith et al. (2012) review and evaluate which ages to use.  621 

Zhou et al. (2011) estimated M for grooved tiger prawns (Penaeus semisulcatus) 622 

based on a state-space weekly delay-difference model fitted using the Bayesian 623 

framework to periods during the year when there is little recruitment, thus approximating 624 

the Z = M +qE approach. The estimate of M was 0.053 wk-1 (95% credibility interval 625 

0.028-0.078 wk-1). Kienzle et al. (2016) estimated M for brown tiger prawns (Penaeus 626 

esculentus) based on a similar model fitted to catch data by week. Two of the scenarios 627 

considered by Kienzle et al. (2016) estimated M, leading to a very precise estimate of M 628 

(best model 0.032 wk-1, SE 0.002). Simulation self-tests for this estimator confirmed that 629 

it was able to reproduce the true parameter values, given assumptions were not violated. 630 

Then et al. (2018) extended the estimator of Z developed by Gedamke and Hoenig (2006) 631 

by adding a time-series of fishing effort, and year-specific estimates of Z.  While this 632 

method may provide reliable information on changes in Z over time, the correlation 633 

between M and q is high (-0.999 for Norway lobster Nephrops norvegicus off Portugal), 634 

resulting in poor precision in those parameters when M and q were estimated 635 

simultaneously, and thus poor ability to estimate M. 636 
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2.4. Estimating M within integrated population models 637 

2.4.1 Fitting population models without consumption information 638 

All of the major packages used to conduct stock assessments based on the ‘integrated’ 639 

paradigm include the option for estimating M, generally as a constant, but also optionally 640 

as a function of age, sex and time (Punt et al., 2021, see also the summary of assessment 641 

packages by Dichmont et al., 2016). In the past, there has been skepticism about 642 

estimating M within an assessment. For example, Schnute and Richards (1995) argued 643 

that M is only estimable when catch-at-age data are available back to the start of the 644 

fishery, when the population was unexploited and, in addition, constraints on the pattern 645 

of recruitment are needed. However, an increasing number of assessments conducted in 646 

jurisdictions such as the USA, Australia, New Zealand and South Africa at least consider 647 

treating M was an estimable parameter (Punt et al., 2021).  648 

Intuitively, estimating M within an assessment is equivalent to integrating a catch-649 

curve-type analysis into the assessment and Butterworth and Punt (1990) show that M is 650 

estimable (in principle) within an integrated assessment when M is independent of age, 651 

time, and sex, catch-at-age data are available, fishery selectivity is constant over time and 652 

asymptotic, and an index that is linearly proportional to abundance is available. 653 

Unfortunately, it is seldom the case that all of these assumptions are valid (or can be 654 

shown to be valid). Consequently, whether the estimate of M from an integrated 655 

assessment is reliable (in the sense of being unbiased and fairly precise) will be case-656 

specific. The ability to estimate M reliably depends on the data that are available, the 657 

other parameters estimated in the assessment, and whether M is assumed to be time-658 

varying (as might be expected given climate change) or age- or sex-specific. The best 659 

case is when age data at the start of a fishery provides information on M, while later age 660 

data provide information on total mortality, allowing the separation of fishing and natural 661 

mortality (e.g., for blue grenadier Macruronus novaezelandiae; Punt et al., 2001). 662 

However, it is seldom the case that age data are available from the start of exploitation. 663 

Another possibility is when the stock has collapsed and there is a fishing moratorium and 664 

catches are very low for several years. However, this situation provides information on M 665 

at low stock sizes and density-dependent effects could be a concern.  666 

Fournier et al. (1998) were able to obtain fairly precise estimates of age-specific 667 

natural mortality for albacore tuna Thunnus alalunga using catch-at-length data, perhaps 668 

because of integrating several types of data from multiple gears, and the method of 669 

parameterizing selectivity and M. Several studies involving simulating data sets from 670 

known populations have explored the extent to which M is estimable (see Table 1 of Punt 671 

et al., 2021, for a summary), and Sippel et al. (2017) identified the age-structured 672 

production model diagnostic as a means of assessing when M can be estimated.  673 

Particular concerns when estimating M within an assessment include that its estimate 674 

maybe highly confounded with other parameters (e.g., catchability of the index of 675 

abundance, the growth rate; trends in recruitment, and the declining slope of a dome-676 

shared (and to a lesser extent, the entirety of any) selectivity pattern) (Butterworth and 677 

Punt, 1990) and the consequences of model misspecification. Thompson (1994) showed 678 

that estimating selectivity and M simultaneously is particularly problematic when the 679 

selectivity pattern is dome-shaped. Hamel (2007) estimated M = 0.07yr-1 for darkblotched 680 

rockfish when the steepness of the Beverton-Holt stock-recruitment curve was fixed, but 681 

= 0.10yr-1 when that parameter was estimated along with M. However, the overall scale 682 
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of the stock and the catch advice was similar between the two models.  Estimates of M 683 

from any catch curve approach, including integrated analysis, are vulnerable to trends in 684 

recruitment which are in turn affected by steepness. 685 

Model misspecification is common in stock assessments and the estimate of M can be 686 

biased if the assessment model is misspecified (Szuwalski et al., 2018). Misspecification 687 

can arise for many reasons, including a failure to correctly represent the true spatial and 688 

stock structure in the population dynamics, use of incorrect assumptions regarding 689 

functional relationships, in particular selectivity, and whether catchability is time-690 

varying. Szuwalski et al. (2018) show that estimating time-varying M when it is actually 691 

time-invariant can “address” retrospective patterns caused by other parameters being 692 

time-invariant but assumed to be time-dependent. Data weighting remains a key 693 

challenge for ‘integrated’ assessment methods with multiple data types (and complex 694 

models with many parameters), although some guidance is available (Maunder et al., 695 

2017). Incorrect assumptions regarding data weighting will lead to incorrect estimates of 696 

the precision of estimates of management quantities, including M. Perhaps more 697 

seriously, assumptions related to data weighting exacerbate the problems that arise from 698 

model misspecification.   699 

2.4.2 Fitting population models to multiple sources of information 700 

An advantage of integrated assessment methods is that multiple data types and sources of 701 

information can be analysed simultaneously (e.g., Maunder and Punt, 2013), potentially 702 

allowing the assessment to more realistically capture the underlying population dynamics 703 

(e.g., by using spatially structured population dynamics models with several time-varying 704 

parameters). However, complex assessments involve many assumptions, which can lead 705 

to model misspecification. Each of the major stock assessment packages have different 706 

features, and hence advantages and disadvantages. It is beyond the scope of the current 707 

paper to contrast these packages and when they are the appropriate information, but this 708 

information is available in summary form in Punt et al. (2020) and at the web-site 709 

(http://toolbox.frdc.com.au/; Dichmont et al., 2021). 710 

An advantage of integrated methods is that it is possible to include the methods 711 

outlined above into an analysis with multiple data types. Integration of multiple data 712 

sources (e.g., tagging data) into the stock assessment model allows information other than 713 

those data (e.g., catch-at-age data) to provide information on M. Alternatively, as with 714 

other approaches, priors can be used to transfer information on M from, say, an external 715 

tagging analysis or life-history covariates into the stock assessment model. Care is 716 

needed to ensure consistency between the external analyses and the stock assessment 717 

(e.g., assumptions about selectivity) and to prevent the loss of information, potentially on 718 

other model parameters, when data are used in the external analysis rather than being 719 

integrated into the stock assessment (Maunder, 2001).  For example, tagging data have 720 

been integrated into stock assessment models that estimate M (e.g., Maunder, 1998; 721 

Hampton and Fournier, 2001) and are now included in the likelihood component of three 722 

commonly used general stock assessment models, MULTIFAN-CL (Hampton and 723 

Fournier, 2001), CASAL (Bull et al., 2012), and Stock Synthesis (Methot and Wetzel, 724 

2013).  725 
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2.4.3 Performance 726 

As is the case for the other methods, it is hard to evaluate the ability of assessment 727 

methods to estimate M within an assessment because the true value is not known for 728 

actual cases. Two generic approaches have been used. The first is to report the precision 729 

(or perceived precision) of estimates of M for actual stocks, and the second is to use 730 

simulation studies to determine when it possible to reliably estimate M. 731 

2.4.3.1 Perceived precision of M 732 

The perceived precision of the estimates of M depends on how the assessment is 733 

specified, with lower (perceived) variance when more parameters are pre-specified, and 734 

there is considerable variation in how precise estimates of M from assessments can 735 

appear to be. 736 

For example, Cappo et al. (2000) estimated M for Australian “salmon” Arripis 737 

truttaceus using a multi-area age-structured model fitted to tag recapture data by age. 738 

Best estimates of annual survival rates were precise (0.54  ± 0.043 for mature fish and 739 

0.74 ± 0.024 for juveniles). Candy et al. (2011) estimated M (independent of age and 740 

time) for Patagonian toothfish (Dissostichus eleginoides) using an age-structured 741 

population model for tagged animals, along with a likelihood for the catch-at-age and 742 

number of recaptures by age over time (the CCODE method of Candy [2011]). Unlike 743 

Cappo et al. (2000), the estimate of M, while plausible (0.155 yr-1), was very imprecise 744 

(95% confidence interval 0.055-0.250 yr-1). Given the variation in how assessments are 745 

specified, and which parameters are estimated or fixed, the level of precision coming out 746 

of an assessment does not directly indicate the quality of the estimate.  747 

2.4.3.2 Simulation studies 748 

Many simulation studies have been undertaken (see Table 1 of Punt et al., 2021). 749 

Unfortunately, there is still little generic understanding of the likely quality of estimates 750 

of M from integrated assessments, except that performance tends to be better when the 751 

assessment is not misspecified and with higher quality and more informative data. Of the 752 

many simulation studies, the following provide an illustration of the types of results 753 

obtained to date. 754 
• Aanes et al. (2007) found that estimates of M tend to be overestimated when the true 755 

value is low and vice versa using simulations based on Northeast Arctic cod (Gadus 756 

morhua).   757 

• Fu and Quinn (2000) explored whether data for pink shrimp were able to estimate time-758 

variation in M, the length-at-50% selectivity (L50), and catchability within the context of a 759 

size-structured population model fitted to survey biomass, length-frequency, and catch 760 
data. They found that inter-annual variation in M and L50 could be estimated reliably, but 761 

only if catchability was assumed time-invariant and known. This result is surprising and 762 

may be a consequence of growth also being assumed to be known with selectivity 763 
assumed to be asymptotic. 764 

• Lee et al. (2011) explored whether it is possible to estimate M when the assessment 765 

model is correctly specified based on data for 12 US West Coast groundfish stocks. The 766 

estimates of M were in most cases quite accurate (bias < 5%). However, in some cases, 767 
the estimates were very biased, despite the model mimicking the assumptions in the 768 

simulation. For example, the “true” value of M used for sablefish (Anoplopoma fimbria) 769 

was 0.07yr-1 but the median estimated value was 0.051 yr-1, i.e., a negative bias of 30%. 770 
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Lee et al. (2011) noted that the simulated data were conditioned on the original value of 771 

M and had no patterns in the residuals (as is common with most simulation studies). They 772 

concluded that if a simulation analysis shows that M can be estimated with reasonable 773 
precision and accuracy, unrealistic estimates of M are a good indication of severe model 774 

misspecification (e.g., use of asymptotic selectivity when selectivity is actually dome-775 

shaped, misspecification of growth parameter values and the extent of variation in 776 

recruitment). This concept was formalized by Piner et al. (2011). 777 

• Maunder and Wong (2011) used simulation to evaluate whether it is possible to estimate 778 

M (by sex) for US mid-Atlantic summer flounder (Paralichthys dentatus). They found 779 
that if correctly specified, the stock assessment model was able to estimate both female 780 

and male M with reasonable precisions but with a positive bias when true M was low, and 781 

a negative bias when true M was high. When applied to the actual data for US mid-782 

Atlantic summer flounder, Maunder and Wong (2011) found that the estimates of M were 783 
quite sensitive to other assumptions of the model. 784 

• Murphy et al. (2018) estimated M by sex, maturity state and time for eastern Bering Sea 785 

snow crab (Chionoecetes opilio) using a size-structured population dynamics model 786 

within the context of a random effects estimation framework. The estimates of time-787 

varying M were surprisingly precise, and the fits to the data were almost perfect, 788 
suggesting that overfitting may have occurred.  789 

2.4.4 Fitting population models using consumption information 790 

Predation is a major component of M, particularly for juvenile fish. Predation estimates 791 

can be used to estimate M, or at least that component of M that can be attributed to 792 

predation. Several approaches have been developed to include predation into assessment 793 

models. The simplest approach is to include a covariate for M into the stock assessment 794 

based on predation information. For example, Methot (1989) modelled anchovy M as 795 

time-varying given time-series for the biomass of Pacific mackerel and Livingston and 796 

Methot (1998) incorporated predation into a population assessment model of eastern 797 

Bering Sea walleye pollock. Hollowed et al. (2000) allowed for more complex predator-798 

prey relationships and uncertainty in predation mortality for Gulf of Alaska walleye 799 

pollock.  800 

Predation sources based on diet information is one way to drive improved estimation 801 

of natural mortality. Another, less commonly addressed issue is mortality on predators 802 

due to the lack of prey. This may be particularly important for juvenile fish. Hoenig et al. 803 

(2017) note that lack of suitable prey may result in greater vulnerability to disease and 804 

may play a role in affecting natural mortality. Trochta et al. (2021) tested methods for 805 

detecting disease and sudden mortality events in Pacific herring. They found that time-806 

varying mortality from disease could be estimated reliably. 807 

2.4.4.1 Extended single-species assessment methods 808 

Perhaps the simplest way to jointly model multiple stocks, and hence the interaction 809 

among them, is the approach of using correlated processes among stocks (Albertsen et al., 810 

2017). However, most multispecies models are based on an explicit component for 811 

predation (and perhaps competition). The most common way to allow for multi-species 812 

effects in stock assessments is to treat M as the sum of a residual (or basal) rate of natural 813 

mortality and to add predation mortality to it, i.e.: 814 
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where ��,��  is the rate of natural mortality for animals of species i (the stock being 816 

assessed) and age a during year y, ���,��������
 is the residual natural mortality (i.e., 817 

mortality to due causes other than predation by the species included in the model such 818 

due to starvation and disease, and predation due to predators not included in the model) 819 

for animals of species i and age a, and ��,��,�
 is the rate of natural mortality for animals of 820 

species i and age a during year y due to predator j. Livingston and Methot (1998) 821 

modelled ��,��,�
 as the product of the number of predators of species j during year y, ���, 822 

and a “catchability’ coefficient, ���,�
, i.e. ��,��,� = ���,����. Hollowed et al. (2000) extended 823 

this basic approach by scaling the predation mortality for a predator by the ratio of its 824 

consumption rate in year y to its consumption saturation point. The model developed by 825 

Hollowed et al. (2000) allowed for uncertainty in predator numbers and was fitted to 826 

conventional data sources such as survey index data as well as fishery and survey catch 827 

proportion-at-age data, but also to data on predation per unit of predator effort and 828 

predator diet data. Hollowed et al. (2000) also estimated the residual natural mortality 829 

rates for ages 1 and 3+, with that for age 2 set to the average of that for ages 1 and 3. 830 

2.5 Multi-species assessment methods 831 

The first stock assessment method that explicitly modelled the dynamics of multiple 832 

species was multispecies Virtual Population Analysis (MSVPA; Gislason and Hegason, 833 

1985; Sparre, 1991; Magnusson, 1995). This approach uses diet data to estimate predator 834 

suitabilities and hence predation mortality. The process of calculating the numbers-at-age 835 

matrix involves applying the standard VPA backcalculation process based on the 836 

predation mortalities from a predation model, updating the predation mortalities based on 837 

the results of the VPA backcalculation process, and iterating these steps until 838 

convergence. In common with standard single-species VPA, this approach requires 839 

estimates of catch-at-age for all years (and species) and assumes that the catch-at-age 840 

(and diet) data are measured with negligible error.  841 

Several integrated multispecies stock assessment methods have been developed based 842 

on the predation model on which MSVPA is based (e.g., Jurado-Molina et al., 2005, 843 

2006; Kinzey and Punt, 2009; Van Kirk et al., 2010; Curti et al., 2013; Ross-Gillespie, 844 

2016; Holsman et al., 2016; Trijoulet et al., 2019). These methods make use of the 845 

stomach content data for parameter estimation and differ in terms of how predation 846 

mortality is modelled and parameterized. In general, the inclusion of predation mortality 847 
in population dynamics models increases the rate of natural mortality for younger 848 

animals, with the result that estimates of recruitment from multi-species models are 849 

usually markedly higher than from single-species models. 850 

Multispecies assessment methods are very data-intensive compared to traditional 851 

single-species methods owing to their need for data on predator rations, and depending on 852 

the model, data on the proportion of prey by age in the diets of predators by age. This 853 

limits the jurisdictions in which these types of models can be applied to data-rich stocks 854 

with surveys that permit the collection of diet data. The aim of a multispecies assessment 855 

is that the residual mortality rate (���,��������
 in Eq. 3) is as small as possible. For example, 856 

the multispecies model developed by Punt and Butterworth (1995) to examine the impact 857 
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of predation by Cape fur seals (Arctocephalus pusillus pusillus) on catches of the Cape 858 

hakes (Merluccius capensis and M. paradoxus) aimed to capture 95% of the mortality on 859 

large hake. This was possible in that case owing to the high levels of cannibalism and 860 

inter-species predation among the two species of Cape hake. However, it is seldom 861 

straightforward to determine how many species to include in a multispecies model given 862 

that including more species increases realism but also the complexity of the model and 863 

associated parameter estimation scheme, as well as the data requirements. Models of 864 

Intermediate Complexity for Ecosystem Assessment (MICE) (Plaganyi et al., 2014) 865 

attempt to achieve an appropriate balance between complexity and realism given the 866 

objectives of the model, and represent a way to more fully integrate multispecies models 867 

in tactical management applications. 868 

2.6. Other approaches 869 

2.6.1 Direct estimation 870 

It is possible to estimate M for sedentary species by direct observation. For example, 871 

McShane and Naylor (1997) estimated M for New Zealand abalone (Haliotis iris) by 872 

monitoring enclosed populations and counting shells. Macpherson et al. (2000) estimated 873 

M for five fish species based on direct measurements at a Marine Reserve off eastern 874 

Spain.  875 

Natural mortality can also be estimated from electronic tags using arrays of detectors 876 

(e.g., in salmon) or archival tags that can detect mortality events. (Starr et al., 2005; 877 

Patterson and Pillans, 2019; Topping and Szedlmayer, 2013). This method is not 878 

applicable to most species owing to the need to be able to track individual animals and 879 

assign changes in population numbers to natural mortality, rather than say, migration. 880 

However, acoustic telemetry tagging is seeing increased usage (e.g., Peterson et al., 2021; 881 

Lees et al., 2021) and can provide good information about M if enough receivers are 882 

deployed. Acoustic tagging does not suffer from the human reporting issues of 883 

conventional tagging, but incomplete detection is an issue but that has been addressed by 884 

Pollock et al. (2004). The potential for estimating M for more stocks will increase as the 885 

availability of large-scale receiver arrays increases.  886 

2.6.2. Inferences from rates of increase 887 

Smart et al. (2018) estimated natural survival for juvenile grey reef shark (Carcharhinus 888 

amblyrhynchos) to be 0.72 (95% credibility intervals, 0.66-0.79; Great Barrier Reef) and 889 

0.78 (95% credibility interval, 0.70-0.85) based fitting a demographic model to data on 890 

increase rates within a Bayesian estimation framework.  891 

3. Variation by age, sex, time, and other factors 892 
Vetter (1988) concluded that M is not constant for many fish stocks and that this 893 

variability is extensive enough that it should not be ignored. M is not a single constant 894 

across time, age, and gender. At a minimum, M should be considered to be higher for 895 

young individuals, increase for old individuals, and differ between genders. Although 896 

there have been few studies that have reliably estimated age and/or sex-specific M, such a 897 

general practice is advisable.   898 
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3.1. Age-specific natural mortality 899 

Vetter (1988) suggested that assessments should use age-specific M to avoid bias, a view 900 

supported by Beverton and Holt (1959) based on age-based catch curves. It is well known 901 

that fish, with their high fecundity, are among the types of animals that exhibit Type III 902 

survivorship curves. M is highest for young individuals due to predation and 903 

physiological processes (Hjort, 1914; Cushing, 1975a).  Based on the observation that the 904 

exponents in Eqns T2.3.7 and T3.3.20 are approximately equal to -1/3, Lorenzen (2000) 905 

suggested that M is inversely proportional to length. The results from stocked fished 906 

studies (Lorenzen, 2000) indicate that the coefficient may vary among populations, and 907 

therefore it may need to be estimated for each population. Direct measurement of age-908 

specific M is generally not feasible in marine systems, except where young fish have 909 

been tagged. Hampton (2000) demonstrates estimation of age-specific M for tropical 910 

tunas using mark-recapture data. 911 

Fortunately, it is often (but not always, Rindorf et al., 2020; 2022) not critical for 912 

estimation of fishery management quantities to model M for young individuals that have 913 

low selectivity to the fishery. This is because it is only the survival of fish into the first 914 

fished ages that must be quantified. However, some situations require accurate estimates 915 

of M for young ages, such as Pacific bluefin tuna (Thunnus orientalis), which are caught 916 

at substantial numbers as young of the year (Ichinokawa et al., 2010) and red snapper in 917 

the Gulf of Mexico where the impact of substantial bycatch of juveniles is highly 918 

confounded with age-specific (Gallaway et al., 2017) and density-dependent M (Gazey et 919 

al, 2008; Forrest et al., 2013).  920 

Brodziak et al. (2011) advocate for the modelling of age-specific M being a good 921 

practice for fish stock assessments. This option is available in Stock Synthesis (Methot 922 

and Wetzel, 2013) and other assessment frameworks. Age-specific M has been modelled 923 

using a piecewise linear function in assessments for Antarctic minke whales 924 

Balaenoptera bonaerensis (Punt et al., 2014) and bigeye (Thunnus obesus) and yellowfin 925 

(Thunnus albacares) tuna in the Pacific Ocean (e.g., Xu et al., 2020; Minte-Vera et al., 926 

2020). Stock Synthesis’ implementation of Lorenzen M is commonly employed in 927 

assessments in the U.S. Southeast region. Tagging data can be used to directly inform 928 

estimation of age-specific M by including age-specific M and mark-recapture analysis in 929 

an integrated assessment model such as Stock Synthesis. Such integrated analyses also 930 

aid in the disentanglement of age-specific M from age-specific fishery selectivity. 931 

Relationships such as Lorenzen (1996) and McGurk (1987) do not allow for an 932 

increased M for older individuals. Senescent mortality may occur due to the declining 933 

ability to respond to stress, increasing homeostatic imbalance, increased risk of disease 934 

and parasitism, and decreasing ability to repair biological damage in older individuals 935 

(Fonteneau and Pallares, 2005). Chen and Watanabe (1989) propose an equation for age-936 

specific natural mortality that represents three phases: initial death rate, stable death rate, 937 

and death due to senescence, which correspond to three phases of growth. By relating M 938 

to growth, they use the parameters of the von Bertalanffy equation to estimate age-939 

specific M. Similarly, Siler (1979) provided a flexible model of survival that can be used 940 

to model high M for both young and old individuals. Siler’s (1979) function includes 941 

components for immature individuals, mature individuals, and senescence:  942 

[ ] [ ]tbaatbaMt 33211 expexp ++−=     (4) 943 
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The values for the five parameters are not provided and need to be assumed or 944 

estimated (e.g., Punt et al., 2014). The first term in Eqn 4 could be replaced with, for 945 

example, Lorenzen’s (1996) or Gulland’s (1987) models if they are considered more 946 

appropriate representations of immature mortality. Lehodey et al. (2008) used the same 947 

term for mortality of immature animals (predation) but combined it with a logistic 948 

function for senescence: 949 
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where a50 is the age at which 50% of the senescence mortality occurs. Eqn 5 differs from 951 

Eqn 4 in that the M levels off at old ages, which is consistent with M increasing for 952 

mature individuals since the proportion mature is often modelled using a logistic curve. 953 

However, Eqn 5 does not account for senescence at old ages.  954 

Maunder (2011) developed a model for age- and sex-specific M based on five 955 

assumptions: 1) M for younger fish is due mainly to processes (e.g., predation) that are 956 

functions of the size of the individuals; 2) M increases after individuals become 957 

reproductively mature; 3) maturity follows the logistic curve (refined in Appendix A); 4) 958 

M due to reproduction may differ by gender, but juvenile M is independent of gender; and 959 

5) M due to senescence over and above that caused by reproduction is either small or 960 

occurs at an age for which there are few fish alive, so it is not influential. The model is 961 

based on combining Lorenzen’s (2000) observation that M is inversely proportional to the 962 

length for young fish and Lehodey et al.’s (2008) logistic model for older fish (see 963 

Appendix A for a revised version of the model). This model has been applied recently to 964 

the stock assessment of albacore tuna (Thunnus alalunga) in the South Pacific Ocean 965 

(south of the equator), incorporating the Convention areas of the Western and Central 966 

Pacific Fisheries Commission (WCPFC) and the Inter American Tropical Tuna 967 

Commission (IATTC) (Castillo-Jordan et al., 2021). 968 

3.2 Sex-specific natural mortality 969 

There is ample evidence from sex ratios-at-age that M differs between males and females 970 

for many stocks (e.g., Maunder and Wong, 2011), with males often having the higher 971 

rates (Beverton and Holt, 1959). Some tuna species are notable exceptions in that female 972 

M appears to increase after they become mature (Cushing, 1975b), a fact Watters and 973 

Maunder (2001) associate with the higher physiological costs of reproduction (also see 974 

Appendix A). Hoenig and Hewitt (2005) present several models for analysing sex ratio 975 

data showing that sex ratio information can provide sex-specific estimates of mortality in 976 

some cases and in others can allow estimation of the difference in mortality rates between 977 

the sexes (though we note that either differential fishing mortality or differential natural 978 
mortality may be the cause). There are many examples of stock assessments where 979 

different values are pre-specified (e.g., Hamel et al., 2013; Lee et al., 2014) or estimated 980 

(e.g., Cope et al., 2016; Thorson and Wetzel, 2016; Haltuch et al. 2017) for males and 981 

females. Note that sex-specific M is confounded with selectivity-at-age, and 982 

differentiating between the two phenomena is challenging (e.g., Cope et al., 2016).  983 
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3.3 Time-varying natural mortality 984 

Most models that estimate M assume it to be a constant over time, perhaps with some 985 

age-dependency. Exceptions to this include assessments that account explicitly for 986 

predation mortality. Time-varying M has been included in stock assessments using 987 

covariates (e.g., Marty et al., 2003; Deriso et al., 2008) and as random effects. 988 

Increasingly, time-variation in M is being included in state-space stock assessment 989 

models either directly (e.g., Swain and Benoît, 2015; Cadigan, 2016; Stock and Miller, 990 

2021) or indirectly (Gudmundsson and Gunnlaugsson, 2012; Nielsen and Berg, 2014; 991 

Berg and Nielsen, 2016; Perreault et al., 2020; but see Aldrin et al., 2019), including in 992 

the Bayesian methods developed by Millar and Meyer (2000), Lewy and Nielson (2003) 993 

and Aanes et al. (2007). The extent of time-variation in M is constrained by a 994 

regularization or distribution-based penalty in these methods.  995 

Aanes et al. (2007) and Aldrin et al. (2021) found that trends in M tend to be 996 

estimated better than the absolute value for M. Information on temporal variability in M 997 

can be identified when there are changes in the slopes of cohort-catch curves that cannot 998 

be accounted for by reported catches (e.g., Wiedenmann and Legault, 2022). This is 999 

consistent with how time-varying M (constant over size) is estimated for Bristol Bay red 1000 

king crab (Paralithodes camtschaticus) and St Matthew Island blue king crab 1001 

(Paralithodes platypus) where the baseline value for M is pre-specified rather than being 1002 

estimated (e.g., Palof et al., 2019; Zheng and Siddeek, 2019). Allen et al. (2017) explored 1003 

the performance of a cohort reconstruction model for salmon populations including some 1004 

in which M was separable into age and time components and others in which M by age 1005 

and time was estimated. 1006 

The assessment of walleye (Sander vitreus) in Saginaw Bay has traditionally been 1007 

based on analysis of tag returns. Fielder and Bence (2014) developed an assessment 1008 

method that integrated multiple sources of data, including tagging data and explored three 1009 

treatments of M: (a) constant, (b) age-specific, and (c) time-varying. The tagging data 1010 

were found to be inconsistent with the fishery data, likely due to the dynamics of the 1011 

tagged population differing from that of the entire population. Model selection was 1012 

accomplished using the Deviance Information Criterion (DIC), with age-varying M 1013 

selected.  1014 

Jiao et al. (2012) developed an age-structured statistical catch-at-age model that 1015 

allows for a variety of formulations for age- and time-variation in M. The model was 1016 

fitted using Bayesian methods and DIC was used for model selection. Jiao et al. (2012) 1017 

also tested whether model fits were improved by linking time-varying M to 1018 

environmental covariates. Their results suggested that temporal variation in natural 1019 

mortality was more important than age-specific natural mortality.  1020 

Recently, condition information has been used to provide estimates of a component of 1021 

M (Casini et al., 2016; Björnsson et al., 2022; Regular et al., 2022), or provide an index 1022 

of M (Varkey et al., 2022; Cadigan et al., 2022). This is a data type that is easy and often 1023 

routinely collected, although determining critical condition values when starvation occurs 1024 

may be a challenge if starvation experiments are not practical. Density-dependence may 1025 

also lead to temporal variation in M. Density dependence may involve the effects of 1026 

cannibalism and dilution of predation mortality by large year classes or recruits (e.g., 1027 

Rindorf et al., 2020; Rindorf et al., 2022). 1028 
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4. Discussion 1029 
The value of M is generally highly influential on quantities that are important for 1030 

providing management advice (see Punt et al., 2021). Therefore, given the uncertainty 1031 

surrounding the estimation of M, many stock assessments include sensitivity analyses to 1032 

the (assumed) value for M. For example, assessments often bracket uncertainty by 1033 

providing results for different levels of M (e.g., Hamel, 2007; Hamel et al., 2013; Haltuch 1034 

et al., 2013). However, sensitivity analysis requires some notion of relative plausibility of 1035 

the different levels of M. A sensitivity analysis using a value for M that is unrealistic is 1036 

unhelpful for management purposes. For example, Hamel et al. (2013) profiled over 1037 

values from 0.01 to 0.10yr-1 for aurora rockfish (Sebastes aurora), which includes both 1038 

unrealistically low and high values for this species, and therefore may be misleading or 1039 

uninformative at the extremes. The relative probability of a series of values for M can be 1040 

calculated based on the fit to the data, although this is essentially the same as estimating 1041 

M within the assessment, while providing a credibility interval. Bayesian analysis can be 1042 

used to evaluate the relative probability of different values of M by combining prior 1043 

information (e.g., from indirect or direct estimates of M) with the data used to fit the 1044 

stock assessment model. This would require uncertainty estimates for the indirect 1045 

estimates of M so that the appropriate priors could be developed (e.g., Hamel, 2015; 1046 

Hamel and Cope, this issue).  1047 

Management of some species is very sensitive to the value of M because the 1048 

management rules are based on both fishing mortality rates and stock status 1049 

determinations. For example, many groundfish stocks are managed based on rules that 1050 

decrease the target fishing mortality rate when the biomass is below a target level (e.g., 1051 

Punt et al., 2008; Anon, 2019). Since both the estimated target biomass and fishing 1052 

mortality depend on M, lower levels of assumed or estimated M often mean that the 1053 

estimated target fishing mortality is lower and the target biomass is higher, leading to a 1054 

‘doubling’ effect on allowable catches. 1055 

Analysis of tagging data, particularly genetic (close kin) tagging (Bravington et al. 1056 

2016a), is probably the most promising direct method to estimate M for stocks for which 1057 

adequate funding is available to conduct a well-designed study. However, it is difficult 1058 

and expensive to design and implement a traditional tagging study that addresses all the 1059 

issues that can bias the results. Even in data-rich cases there is debate whether the 1060 

estimates of M are reliable (Cadigan, 2016; Rose and Walters, 2019; Regular et al., 1061 

2022).    1062 

4.1 Good practices for M in assessments 1063 

Although many new methods for estimating M have been developed since Vetter (1988) 1064 

outlined the main concerns over three decades ago, many of these concerns remain. The 1065 

same traditional methods based on violated assumptions and unreliable data are still used 1066 

even though Vetter (1988) concluded that all methods have limitations or disadvantages. 1067 

Attempts to estimate M inside stock assessment models, although much more common 1068 

than in the past, are often unsuccessful. Consequently, M and its variability are still very 1069 

poorly known for even the most studied fish stocks that have been subject to continuous 1070 

exploitation for decades.  M is frequently assumed to be constant over age, gender, or 1071 

time even though this is unlikely. Unfortunately, the values of M often become 1072 

institutionalized mainly from customary use (Zhang and Megrey, 2006). This section 1073 
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offers some suggestions for “good practices”, recognizing that the field is not yet really in 1074 

a position to establish “best practices”.  1075 

Many values for M used in assessments remain based on life history theory, 1076 

maximum age, and regression (LHMR) approaches. There will be cases when LHMR 1077 

methods are more reliable than direct estimates and the results of stock assessments. 1078 

However, LHMR methods should be used only if more direct estimates or stock 1079 

assessment internal estimates are unavailable or unreliable (which, admittedly, is most of 1080 

the time). If they are to be used, they should be accompanied by measures of uncertainty 1081 

(e.g., Cope and Hamel, this issue; Hamel and Cope, this issue), which should be 1082 

propagated into the results of the assessment either directly through Bayesian or related 1083 

approaches, or through sensitivity analyses and profiles. Catch curve analyses, while 1084 

crude and dependent on many assumptions that are likely to be violated, should be 1085 

considered and compared to LHMR methods, especially when multiple years of catch-at-1086 

age data are available from the start of fishing or from unfished populations. However, it 1087 

is preferable to integrate the catch-at-age data into the assessment and estimate M. This 1088 

ensures that the assumptions used to estimate M are consistent with those used in the 1089 

assessment, so that all data sources inform M, and that uncertainty is effectively 1090 

represented. As noted in section 2.4, integrating multiple data sources within a single 1091 

framework is not a panacea and it is easy to envisage situations when the estimate of M 1092 

from a single maximum age-based approach will be less biased that the estimate of M 1093 

from a misspecified integrated assessment. 1094 

Estimating M inside the assessment model may allow estimation of a wider range of 1095 

sampling processes (e.g., selectivity) that may improve bias and precision of estimated 1096 

quantities. Data conflicts can be evaluated within an integrated stock assessment model 1097 

by using likelihood component profiling (Beyer-Rogers et al., 1997; Maunder and Starr, 1098 

2001; see Perreault and Cadigan (2021) for cases with random effects) on M and other 1099 

approaches (Carvalho et al., 2017, 2021). This method can be more appropriate than 1100 

independent analyses because it is conducted within the same framework and is therefore 1101 

not dependent on the assumptions of the independent analyses. Nevertheless, it remains 1102 

useful to analyse the data sets independent of the integrated model to obtain additional 1103 

insights into the data and assumptions, and to evaluate the possibility that the integrated 1104 

model is misspecified and the estimates of M biased. 1105 

Careful repeated tagging/marking experiments probably hold the most promise for 1106 

determining M with any reasonable degree of accuracy.  However, it is difficult and 1107 

expensive to design and implement a tagging study that addresses all the issues that can 1108 

bias the results. The development of integrated analyses (Fournier and Archibald, 1982; 1109 

Methot, 2009; Maunder and Punt, 2013; Punt et al., 2013) that allow the inclusion of 1110 

multiple types of data into the stock assessment, including tagging data (e.g., Maunder, 1111 

1998, 2001, 2004; Hampton and Fournier, 2001; Goethel et al., 2011) along with more 1112 

recent tagging-based methods (e.g. Hoenig et al. 1998a, b, Myers and Hoenig 1997, Jiang 1113 

et al. 2007a,b) may allow relaxation of some of the violated assumptions required for 1114 

historical methods for analyzing tagging data. Integrated analysis also allows other 1115 

information (e.g., catch-at-age data) to provide information about M in addition to the 1116 

information in the tagging data, which may lead to lead to improved estimates. This 1117 

suggests that integrated analysis with tagging data should be the gold standard for 1118 

fisheries stock assessment of exploited fish stocks. However, care should be taken to 1119 
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check for model misspecification, which can lead to an artificial perceived ability to 1120 

estimate M, and to apply appropriate weights to each data type. Conducting a tagging-1121 

only analysis using a more recent tagging-based method is one way to potentially identify 1122 

model misspecification in a complex integrated assessment. Finally, close-kin tagging is 1123 

a promising method that may provide the best estimates of M. This is mainly because the 1124 

approach avoids some of the common assumptions required in traditional tagging studies.  1125 

We see the value for using multi-species models to estimate M (and its variation with 1126 

age and time), but recognize that the age-classes subject to predation by monitored 1127 

species are often those that have yet to recruit to the fishery such that estimates of 1128 

quantities of management importance such as spawning stock biomass are often very 1129 

similar between conventional assessment methods and those that account for predation 1130 

mortality (e.g., Kinzey and Punt, 2009; Holsman et al., 2016; Adams et al., 2022). Yet we 1131 

note that the parameter controlling the degree of density-dependence in spawner-1132 

recruitment is equally difficult to estimate (Lee et al., 2012; Thorson et al., 2019), and 1133 

with multiple fished species of predators preying on juveniles, perhaps more insight on 1134 

spawner-recruitment curvature can come from multi-species models through, for 1135 

example, explaining temporal variation in recruitment (Rossberg et al., 2013). 1136 

The success of estimating M within a stock assessment model varies among stocks 1137 

and depends on the amount and type of data that are available, the assumptions that are 1138 

made in the assessment, and how M is modelled. Data used in other approaches to 1139 

estimate M can be included in stock assessments, and the stock assessment approach 1140 

more appropriately identifies and deals with model assumptions, improves consistency, 1141 

and propagates error. This automatically allows total mortality to be split into fishing and 1142 

natural mortality since catch is also integrated into the assessment. Information from 1143 

indirect methods or other species can be included in the assessment model using priors. 1144 

This requires estimating the uncertainty in the estimates of M (Hamel and Cope, this 1145 

issue; Cope and Hamel, this issue) and is probably the best way to force analysts to think 1146 

about how reliable their indirect estimates of M really are. The assessment model will 1147 

then update the estimates of M based on the information available in the data used in the 1148 

assessment model. 1149 

Variability in M with age, gender, time, and other factors may be influential on 1150 

management advice and has yet to be dealt with as a generally accepted approach. In 1151 

particular, it is important to include age-specific M in an assessment model when some 1152 

fisheries catch much younger fish than other fisheries (Gallaway et al., 2017). Collection 1153 

of sex composition data has identified that sex-specific differences in M are common and 1154 

can be used as the basis to estimate sex-specific M (e.g., Maunder and Wong, 2011), 1155 

highlighting the importance of collecting sex-composition data. 1156 

It is advisable to use a variety of approaches to estimate M (Quinn and Deriso, 1999; 1157 

Cope and Hamel, this issue; Höffle and Planque, this issue). We suggest that for each 1158 

species assessed, a comprehensive evaluation of M should be undertaken (e.g., Maunder 1159 

and Wong, 2011). For example, Hewitt et al. (2007) provided an extensive evaluation of 1160 

M for Chesapeake Bay blue crab Callinectes sapidus. They compared estimated survival 1161 

rates from tagging data using a Brownie model and separated out M by estimating 1162 

exploitation rates from catch and survey estimates of abundance. These were compared 1163 

with indirect methods based on empirical relationships and life history theory. The 1164 

estimates from tagging data, indirect methods, and from an assessment model (Miller et 1165 
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al., 2005) were higher than previous estimates that were based on conservative 1166 

assumptions about maximum age.  1167 

Unfortunately, irrespective of how estimation of M is addressed in the assessment and 1168 

how much data are available for estimation purposes, some uncertainty in M will remain. 1169 

Best practices for addressing this uncertainty include (a) capturing estimation uncertainty 1170 

to maximum extent possible, e.g. by estimating M with a prior and hence representing 1171 

uncertainty in M in the posteriors for model outputs or including M as an axis of 1172 

uncertainty in ensembles (Maunder et al., 2020), (b) accounting for uncertainty in M 1173 

when setting scientific uncertainty buffers (e.g. within the US deciding on the size of the 1174 

buffer between the overfishing level and the acceptable biological catch, e.g. Monk et al., 1175 

2018), (c) providing decision makers with ‘decision tables’ that show the sensitivity of 1176 

assessment outcomes to uncertainty in M (e.g. Monk et al. 2018), and (d) using 1177 

management strategy evaluation (Punt et al., 2016) to identify harvest strategies that are 1178 

as insensitive to uncertainty in M as possible. 1179 

4.1 Future research 1180 

Despite some progress in improving methods to represent and estimate M either inside or 1181 

outside the stock assessments, there is substantial work to be done. The ultimate goal is to 1182 

provide management advice for exploited fisheries. Therefore, evaluation of the 1183 

reliability of methods for estimating M should be viewed in this context. Several studies 1184 

have reviewed the current literature and evaluated the performance of a particular 1185 

approach or group of approaches, and proposed an improved approach (e.g., Then et al. 1186 

2018). Other studies have tackled issues with a particular estimator (e.g., Hoenig, 2017), 1187 

and others that have evaluated the consequences of estimation error in terms of 1188 

management advice (e.g., Punt et al., 2021). However, there has not been a 1189 

comprehensive evaluation of the alternative approaches and their appropriateness for 1190 

providing management advice. Here we have attempted to review the literature and 1191 

provide guidance on the potential of different approaches when applied for stock 1192 

assessment purposes.   1193 

Further research is needed to determine the appropriateness of using the alternative 1194 

approaches for the provision of management advice, particularly the representation of 1195 

uncertainty and how this is taken into consideration in the advice provided to managers. 1196 

The type of management advice differs depending on the characteristic of the population, 1197 

fishery, and management objectives. In addition, data availability will constrain the 1198 

approaches that can be applied. Therefore, it is difficult to provide thorough advice that 1199 

covers all situations.  However, integrated stock assessment models that provide stock 1200 

status evaluations or evaluate harvest control rules are commonly applied and is an area 1201 

that allows focused research. Only limited simulation studies to evaluate the performance 1202 

of estimating M in integrated models have been conducted (e.g., Maunder and Wong, 1203 

2011; Lee et al. 2011; Aldrin et al. 2021; Cronin-Fine and Punt, 2022). Some have 1204 

evaluated more complicated forms of natural mortality such as age- or sex-specific 1205 

formulation (e.g., Lee et al., 2011) and time-varying natural mortality (Aanes et al., 2007; 1206 

Jiao et al. 2012). A more thorough simulation analysis is needed. This may require using 1207 

a more complex operating model that includes multiple interacting species and 1208 

environmental drivers.    1209 

The sensitivity of data-limited stock assessments to uncertainty in M remains an area 1210 

for exploration, though it is not uncommon to incorporate wide priors and Monte Carlo 1211 
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simulation to incorporate uncertainty in M (Dick and MacCall 2011, Cope 2013). This 1212 

research should evaluate not only framework-specific data-limited approaches (e.g., 1213 

LBSPR, DB-SRA), but also equivalently specified approaches in an integrated model 1214 

(e.g., Cope 2013; Rudd et al., 2021) and more fully specified integrated models that 1215 

better represent the uncertainty.  1216 

In conclusion, the fisheries science community should spend more effort on 1217 

understanding and estimating fundamental population dynamic process parameters, such 1218 

as M, that are highly influential on management advice. We recommend using 1219 

approaches that use all the available information and appropriately represent uncertainty. 1220 

This essentially means estimating M in the assessment, using priors from indirect 1221 

information (e.g., relationships with maximum age), and integrating direct information 1222 

into the stock assessment. 1223 
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Table 1. Equations for representing or estimating natural mortality. M is the instantaneous rate of natural mortality, K is the growth 1785 

rate,  ! is the asymptotic length, "! is the asymptotic weight,  t0 is the theoretical age at which the fish would have length zero, tm is 1786 

the age at maturity,  ��∗ is the age at the end of reproductive span (where senescence starts; Chen and Wantanabe, 1989), Lm is the 1787 

length at which 50% of a year-class reaches maturity, tmax is the maximum age, p is the proportion surviving to the maximum age, T is 1788 

water temperature, GSI is the gonadosomatic index, L is length, W is body weight, M* is the limiting value of M approached by the 1789 

largest fish, β is the exponent of the weight-length relationship, tc is the critical age (the time that the cohort achieves its maximum 1790 

biomass, Zhang and Megrey, 2006). 1791 

 1792 

Table 1a. Theoretical approaches. 1793 

Approach Reference Notes Equation Eqn No 

Life history approaches    

Jensen tm Jensen (1996)   M = 1.65/tm T1.1.1 

Jensen K Jensen (1996)   M = 1.5K T1.1.2 

Roff Roff (1984)  3 / (exp( ) 1)
m

M K t K= −  T1.1.3 

Zhang and 

Megrey 

Zhang and Megrey 

(2006)  

tc could be tm or a fraction of tmax � = $%/(&'(( %(�) − �+)) − 1)  T1.1.4 

Beverton  Beverton (1992) / 3/ (3 / )
m

L L M K∞ = +  � = % ,3 ! � − 3. 
T1.1.5 

Chen and 

Watanabe 

Chen and 

Watanabe (1989) 
��∗ = − 1% /
01 − &1234 + �+ 

5+ = 1 − &61(27∗623) 5� = %&61(27∗623) 
58 = − 12 %8&61(27∗623) 

� =
9:
; %1 − &61(2623) ,

%5+ + 5�(� − ��∗) + 58(� − ��∗)8
� ≤ ��∗� ≥ ��∗ 

T1.1.6 

Maximum age     

Proportion 

surviving to 

maximum age 

 p = proportion remaining M = -ln(p)/tmax T1.2.1 

Rule of thumb 

M correlations 

 p = 5%  M = 3/tmax T1.2.1a 

Gulland-W Gulland (1987)  M = M(L/L∞)-1.5  T1.3.1 

Gulland-L Gulland (1987)  M = M(W/W∞)-0.5  T1.3.2 
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Table 1b. Non-recommended empirical estimates. * = old data set ^ = questionable substitution # = no transformation ‘ = overly 1794 

complex 1795 
Approach Reference Notes Equation Eqn No 

Maximum age     

Inverse 

relationship-1 

Hewitt and Hoenig 

(2005) 

 M = 4.22/tmax T2.2.1a*^ 

Inverse 

relationship-2 

Hamel (2015)  M = 4.374/tmax T2.2.1b* 

Inverse 

relationship-3 

Then et al. (2015)  M = 5.109/tmax T2.2.1c# 

Hoenig Hoenig (1983) Fish, converted from  ln(M ) = 

1.46-1.01 ln(tmax) 

Mollusks, fish, and cetaceans,  

Converted from ln(M ) = 1.44-

0.982ln(tmax)  

� = 4.3060����6�.+� 
 

 � = 4.2207����6+.CD8 
 

T2.2.2a*’ 

Hoenig-

revised-1 

Then et al. (2015) Converted from ln(M ) = 1.717-

1.01ln(tmax) 

 

� = 5.5678����6�.+�   

 

T2.2.2b’ 

Hoenig-

revised-2 

Then et al. (2015) Nonlinear least squares � = 4.899����6+.C�H T2.2.2c# 

M correlations    

Pauly Pauly (1980) Converted from log10(M) = -

0.0066 – 0.279log10( !) + 

0.6543log10(K) + 0.4634log10(T) 

� = 0.9849%+.HIJK !6+.8LCM+.JHKJ T.2.3.3* 

Empirical K Jensen (1996)  M = 1.60K T2.3.4a*# 

Empirical K-

revised-1 

Hamel (2015)  M = 1.753K T2.3.4b* 

Empirical K-

revised-2 

Then et al. (2015)  M = 1.692K T2.3.4c# 

Ralston Ralston  (1987)  0.0666 2.52M K= − +  T2.3.5* 

Empirical tm Charnov and 

Berrigan (1990) 

 M = 2/tm T2.3.6* 

Gunderson Gunderson (1997)  M = 1.79GSI T2.3.7# 

McGurk  McGurk (1987) Converted from ln(M) = -4.778 -

0.397ln(W) for daily mortality 

 

M = 3.07W—0.397 T2.3.8* 
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Peterson - 

Wroblewski  

Peterson and 

Wroblewski (1984)   

 M = 1.92W—0.25 T2.3.9* 

 1796 

 1797 

Table 1c. Equations for representing or estimating natural mortality. Only the recommended estimator of each class is provided, other 1798 

estimators are given above.   1799 
Approach Reference Notes Equation Eqn No 

Maximum age     

Inverse 

Relationship 

Hamel and Cope 

(this issue) 

Uses Then et al. (2015) data 

SD in log space = 0.31 

M = 5.4/tmax T3.2.1 

M correlations    

Pauly-revised Then et al. (2015)  � = 4.1181%+.LK !6+.KK T3.3.3 

Empirical K Hamel and Cope 

(this issue) 

Uses Then et al. (2015) data 

SD in log space = 0.85 

M = 1.55K T3.3.4 

Gunderson-

revised 

Hamel (2015)  M = 1.817GSI T3.3.7 

Lorenzen Lorenzen (1996)  M = 3W-0.288 T3.3.10 

       

 1800 
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Table 2. Estimates of M (yr-1) from K (yr-1) using Jensen’s (1996) theoretical relationship 1801 

M = 1.5K for the values of K estimated in the English sole stock assessment (Stewart, 1802 

2007).  1803 

 K M 

Year Female Male Female Male 

1876-1960 0.36 0.48 0.54 0.72 

1961-1970 0.34 0.45 0.51 0.68 

1971-1980 0.24 0.33 0.36 0.49 

1981-1990 0.22 0.29 0.32 0.43 

1991-2006 0.22 0.29 0.33 0.44 

 1804 

 1805 

  1806 



 44

 1807 

 1808 
 1809 

Figure 1. Correlation between von Bertalanffy growth rate and asymptotic length 1810 

parameters K (y-1) and L∞ (cm) (top) and estimates of natural mortality, M (y-1) (bottom) 1811 

based on Jensen’s empirical relationship, M = 1.6K for the 42 estimates of the von 1812 

Bertalanffy K for dorado (Coryphaena hippurus) from different data and stocks presented 1813 

in Chang and Maunder (2012).  1814 
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 1816 

 1817 
 1818 

Figure 2. Relationships between maximum age (left), von-Bertalanffy K (middle), and 1819 

gonadosomatic index (right) and natural mortality with 95% confidence intervals (dotted 1820 

lines) and prediction envelopes (dash lines) from Hamel (2015). 1821 

1822 
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Appendix A: A suggested model for natural mortality  1823 

A general model for age- and sex-specific natural mortality that expands that developed 1824 

by Maunder et al. (2009) and Maunder (2011), and is based on the assumptions outlined 1825 

in the main text: 1826 

��,� = ���N ,  �,� ��2∗.O + ���2,� − ���N ,  �,� ��2∗.O

1 + &'(P$�Q �,� −  I+,�RS 1827 

 1828 

with the defaults T = −1.5 from Gulland(1987), ss L ,50 and β  from the maturity curve, 1829 

Mmat,s= 5.4/tmax,s (Hamel and Cope, this issue) if tmax is available otherwise  Mmat,s = 1830 

4.118Ks
0.73Linfs

-0.33 (Then et al. 2015) and ���N = 3"��2∗6+.8DD from Lorenzen (1996), Lmat* 1831 

and Wmat* are the length and weight of a fish when they first become mature for either 1832 

sex (could be set at the minimum length over both sexes when 5% of the fish are mature) 1833 

or some other convenient corresponding length and weight of a fish before it becomes 1834 

mature. 1835 

 1836 




